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ABSTRACT
The main purpose of the study was to determine reproducibility limits of night vision goggle (NVG) acuity measurement
under relatively high and low illumination levels. Psychometric acuity functions of three observers were repeatedly
measured using Landolt CÕs as stimuli. The reproducibility limits of the Snellen acuity value (20/xx) relating to 50, 75 and
95% correct (adjusted for chance) were then determined. Reproducibility limit is defined as approximately 95% of all pairs
of replications (20/xx) from the same illuminance and same observer, generated on different days, should differ in absolute
value by less than the reproducibility limit. It was determined that for the lower illumination (8.61E-4 lux) at 50% corrected
for chance probability level, the reproducibility limit was 5.1 Snellen acuity (20/xx) and for the higher illumination (1.38E-
2 lux),  2.5 Snellen acuity. These limits were 17% and 13% of mean acuity, respectively.

INTRODUCTION and BACKGROUND
There are numerous methods used to determine night vision goggle (NVG) visual acuity (Pinkus & Task, 1998); limiting
resolution (Stefanik, 1994; Task, 1979), Snellen Acuity (Bailey & Lovie, 1979; Wiley,  1989; Miller, Provines, Block &
Tredici, 1984), square-wave targets (Task & Genco, 1986), Landolt CÕs (Pinkus & Task, 1997), adaptive psychophysical
(Simpson, 1989) and directly measuring the psychometric function (Pinkus & Task, 1997; Brown, Galanter, Hess &
Mandler, 1962). Each method produces a number that is composed of the actual acuity value plus error. There can be many
sources of error but the largest are the method itself and the inherent variability of the observer while working under
threshold conditions. Observer variability is reduced to a minimum through extensive training, testing the same time
everyday and shortened sessions in order to reduce eye fatigue. Additionally, even though observers are given specific
instructions, response criteria also vary among or within observers; even over the course of a single experimental session.
To eliminate the criteria problem, Pinkus & Task (1998) used Landolt CÕs in a four-alternative forced-choice (4AFC)
paradigm to measure the entire psychometric function. This paradigm allowed for any desired response criterion level (e.g.,
50% or 75% corrected for chance, probability of detection) to be selected for the prediction of NVG visual acuity
performance.

The goal in this study was to select a stable method and then determine its reproducibility (ASTM Practice E 691).
Reproducibility represents observation-to-observation variability under a given set of viewing conditions. Directly
measuring the psychometric function should keep variability due to the test method to a minimum. Determining
reproducibility will allow the use of this test method to determine NVG visual acuity with a known error tolerance. The
interpretation of visual acuity data is investigated in the discussion section.

METHOD
Participants
The trained observers were one female and two males highly experienced with the operation of NVGs. They ranged in age
from 37 to 47 years, each having normal (20/20) or corrected-to-normal binocular visual acuity.

Apparatus and Stimuli
NVGs - Participants viewed the target stimuli using a pair of ITT model F4949D (SN 3872) NVGs. The goggles had a gain
of approximately 5600 as measured using the Hoffman (Stamford, CT) ANV-120 NVG Test Set. Before the start of each
test session, the optical alignment of the NVGs was verified using the Hoffman ANV-126 Night Vision Tester.
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Each test session was conducted in a light-tight laboratory. The observer was seated at an optical table with the NVGs
secured in a stationary mount directly in front of them. The observer was able to adjust their seat to the proper height for
viewing through the NVGs. An external regulated power supply was used to energize the goggles.

At the beginning of each test session the observer would set up and pre-focus the NVGs using the following procedure.
After dark-adapting for 15 minutes, the NVGs were powered on and the observer adjusted the inter-pupillary distance until
a fused circular image was visible. The observer (using their dominant eye) focused one channel at a time. The observer
first focused on the green scintillation by looking at the ceiling and adjusting the eyepiece until the focus of the scintillation
was as sharp as possible. Next, the observer focused the corresponding objective lens by viewing the 3 x 3A, NVG high-
contrast square-wave resolution chart (Task & Genco, 1986) located at a 30 ft distance (optical infinity). The objective
lenses were pre-focused using the highest illumination level (1.38 x 10-2 lux). The observer chose the finest grating clearly
resolvable and adjusted the objective lens to the sharpest focus possible. If necessary, the observer fine tuned the eyepiece
while viewing the chart. These steps were repeated for the second channel.

Illumination source and Illumination levels - Target stimuli were illuminated by one or two moon illumination lamps
outfitted with adjustable 2856K color temperature incandescent bulbs (MIL-L-85762A). Metal apertures were used to
achieve the two illumination levels. Using apertures to vary illumination intensity did not affect the 2856K color
temperature. Table 1 shows the illumination levels and corresponding NVG eyepiece luminance outputs. The lowest
illumination level is approximately equivalent to 1/300th full moon (RCA, 1974; p. 65) while the highest illumination level
is 16 times brighter.

Table 1. The two illumination levels and corresponding NVG output luminances for this study.

ILLUMINATION
ON LANDOLT C

NVG OUTPUT
LUMINANCE

8.61x10-4 lux
(8.00x10-5 fc)

0.356 nit
(0.104 fL)

1.38x10-2 lux
(1.28x10-3 fc)

4.324 nit
(1.262 fL)

Landolt C test stimuli and automated data recording device - The test stimuli were closely-sized computer- created, high
contrast (67% Michelson; Farrell & Booth, 1984) Landolt CÕs (National Academy of Sciences, 1980) printed using a high
resolution, photo-grade laser printer. The print out of each target was mounted on 18 cm x 18 cm (7Ó x 7Ó) squares of foam
board. Each target varied in gap size and represented, when converted, a specific Snellen visual acuity value (20/xx). The
back of each target was labeled with four different bar code patterns. Each bar code contained identification information for
that particular target such as target number, target type, the corresponding visual acuity (20/xx), the target contrast, and the
gapÕs orientation.  For each experimental trial, a Landolt C was placed in the center of a larger foam board surround 56 cm
x 56 cm (22Ó H x 22Ó L). This surround was secured to the front of a black light-tight wooden box. The box measured 66
cm H x 56 cm W x 36 cm L (26 H x 22Ó W x 14Ó L) and sat on top of a stand. The surround had the same reflectance as the
background of the Landolt CÕs. This box housed a bar code scanner/reader used to automate the recording of Landolt C
target information. The light-tight box prevented the incompatible red laser beam from the bar code scanner from affecting
the NVGs. The bar code reader connected directly to a computer at the experimenterÕs station. The entire set up was
positioned at 30 feet or optical infinity from the observer. A four button response box located next to the observer was also
connected to the computer. The observer used the buttons to indicate the orientation of the Landolt C gap (up, down, left or
right). The computer recorded the button press response and Landolt C bar code information as well as other pertinent
information.

Procedure
Three trained observers participated in this study. Each observer completed 2 sessions per day on each of 3 days. Each
session (140 randomized trials) used an illumination level of either 8.61E-04 or 1.38E-2 lux (target background
reflectanceÕs were 5.64E-5 and 9.03E-4 lux, respectively). At the beginning of each test session, the observer dark-adapted
for approximately 15 minutes. The observer then turned on and focused the NVGs. For each trial, the experimenter, using
pre-determined randomized stimuli ordering, placed a Landolt C onto a small ledge on the surround and kept it blocked
from the observerÕs view. This ledge centered the ÔCÕ and was not noticeably visible when viewed through the NVGs. The
experimenter pressed a switch to scan the bar code on the back of the target. The experimenter would then move away from
the Landolt C and the observer had about four seconds to view the stimulus. At the end of the four-second interval the
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computer would beep an alarm and the experimenter would immediately block the stimulus from the observerÕs view. The
observer would press the appropriate button on the response box to indicate what direction the gap was oriented: up, down,
left or right. The observer was not provided with any feedback on their performance. This sequence of events was repeated
until 140 trials were completed (7 Landolt C target sizes x 4 orientations x 5 repetitions of each orientation). The 7 target
sizes are Snellen acuity values (i.e., 20/xx).

RESULTS
The percent of correctly identified orientations out of the 20 trials (4 orientations x 5 repetitions) for each combination of
illuminance, observer, acuity and replication (i.e., day) was determined. Chance alone would result in 25% correctly
identified trials. It is assumed that percents that are less than 25% would approach 25% with a sufficient number of trials.
The percents were transformed to adjust for chance. The procedure for this transformation was as follows:

Let: P = percent correct trials
PA = percent correct trials adjusted for chance

(1) if P < 25 then P = 25
(2) PA = (P-25) * 100/75

For probit analysis, adjusted percents are converted to normal equivalent deviates (NED). An NED is the value of a
standard normal variable whose cumulative probability (expressed as a percent) would equal the percent correct adjusted
for chance. The NED values are then used as the dependent variable in a linear regression with acuity as the independent
variable, where a linear relationship is assumed (Finney, 1980). The estimated NED=b0+b1*acuity is then transformed back
to percents. The resulting estimates of PA form a curvilinear function.

If there is a range of acuity values where PA is near 0 or PA is near 100, the relationship between NED and acuity will not be
linear. The rationale for selecting percents used for modeling was to start with the largest acuity value where the observer
was guessing (correct ≤ 7 out of 20 was used) if applicable, and end with the smallest acuity value where PA=100, if
applicable. Since an NED cannot be computed for 0% or 100%, 0% was set to 1% and 100% was set to 99%. Correct ≤ 7
was used as a ÔguessingÕ cutoff since the probability of 8 ≤ Correct is 0.10 by chance alone. For each illuminance, observer,
and replication (i.e., day), the acuity that related to predicted 50, 75, and 95% correct adjusted for chance was determined.
The reproducibility limits (RL) of the acuity value (20/xx) relating to 50, 75, and 95% correct adjusted for chance were
determined and are shown in table 2.

Table 2. Snellen acuity reproducibility limits (20/xx) for each illuminance.

Illuminance % Correct Mean Acuity RL RL % of
(lux) (Adjusted) (20/xx) (20/xx) Mean

50 29.8 5.1 17
8.61E-04 75 33.3 6.1 18

95 38.5 9.4 24
50 18.9 2.5 13

1.38E-02 75 21.1 4.5 21
95 24.1 7.8 32

The same procedure for determining the predicted percent correct adjusted for chance that was performed for each
illuminance, observer, and replication was also performed for each illuminance and observer, summed across replications.
Figure 1 contains plots of the predicted percents. This figure is provided to graphically show the results of probit analysis,
and to demonstrate differences among the three observers.
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Figure 1. Predicted percent correct adjusted for chance, for each illuminance and observer.
Acuity values are given that correspond to 50 and 75% correct adjusted for chance.

DISCUSSION
Table 2 summarizes the Snellen acuity reproducibility limits at the two illumination levels for three levels of percent correct
(adjusted for chance). The 50, 75 and 95% levels represent threshold, a just-noticeable-difference (JND) above threshold
and a conservative, high-confidence gap detection, respectively. The overall reproducibility limits show a higher variability
at the lower illuminance condition.

One way to apply the reproducibility limit is to use it to assign a range for a given NVG visual acuity measurement. Many
times, the interactions between NVGs and other cockpit subsystems such as a gold-coated canopy or an incompatible light
source, are evaluated by making only a few NVG visual acuity measurements (baseline versus test condition) using just a
couple of observers. The problem with this approach is that the variability that is inherent in both the test method and the
observer can easily mask the true NVG acuity effects. The reproducibility limits at the 50% correct were approximately
15% of the mean acuity values. When interpreting field data acuity results, 95% of all absolute differences in observations
should differ by less than 15% of the mean acuity if variability is due solely to experimental error. If the data varies more
than 15% than there are additional sources of variability such as the infrared-attenuating effects of canopy coating on NVG
visual acuity. For example, if, under low light levels, an observer reports an NVG visual acuity baseline of 20/30 and then
20/35 while looking through a coated canopy, one might (erroneously) conclude that the canopy caused a large loss of
acuity which translates into a loss of target acquisition slant range. The difference between 20/30 and 20/35 is 5 which
when divided by their average of 32.5 equals 0.15 or 15%. A difference of five then is approximately at the 95 percentile of
acuity differences under the same viewing conditions. Therefore, this example data is at the outer limit of variability due
solely to experimental error implying that small differences found in field measurements are questionable. The
reproducibility value of 15% of the mean acuity value is a good estimate for field tests. If the tests are conducted under
more conservative criteria (75% correct), then about 20% applies.

CONCLUSIONS
One problem we have observed in this and other studies is that of interpretability. Observers reliably report seeing Landolt
C gaps at relatively high visual acuityÕs of 20/20 and better, even under degraded viewing conditions such as low-light
levels or noisy (scintillation) conditions. But does the observer really see the gap? When working at noisy threshold levels
the gap can appear to move around to the four different locations or alternately open and close. Sometimes no gap is seen at
all, maybe just a lighter area or a circle having a flat side. When the observer correctly responds to this flat side, we
interpret the correct response as a seen gap having a specific size indicating a specific visual acuity which explains the
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higher than expected visual acuityÕs. This problem underlies all acuity measurements thus affecting interpretability and
conclusions of studiesÕ findings. To try to reduce this effect the stimulus duration was held to four seconds. The current
method of stimulus presentation makes shorter, precise durationÕs difficult. A tachistoscope-type apparatus suited for NVG
optics will have to be designed for the next study that will examine the effects of short-duration stimulus presentations on
NVG acuity.
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